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Abstract

Constraint-based types provide a formal foundation for many varieties of architectural
analysis. A software architecture, typically defined using an Architecture Definition Lan-
guage (ADL), exposes the overall structure of a complex system in a way that allows valida-
tion and computation of overall system properties. We argue that the HM(X) type system
can be used to implement many analyses in a simple and elegant way. HM(X) uses an ex-
tensible constraint subsystem: given a user-defined syntax and semantics (via a constraint
solver) for an analysis domain, the HM(X) type system infers system-wide properties from
the architectural definition. The core inference engine is thus extended to different forms
of analysis by using different constraint solvers. We demonstrate our ideas by constructing
a unit analysis built on top of HM(X). We also show how HM(X) provides a basis for the
analysis of dynamic or higher-order architectural definitions.

1 Introduction

A software architecture exposes the basic structure of a system for analysis. The architectural
description defines the system components and their properties as well as the interconnec-
tions between the components. Analysis infers overall system properties from component
properties and their interconnections; validation is used to ensure that the overall system
meets criteria for safety or correctness. We assume that the properties of individual compo-
nent are known, either declared as part of the component’s specification or, perhaps, inferred
from the definition of a component. But what sort of analysis should be incorporated into an
Architecture Definition Language (ADL)? What properties should be computed or verified?
We contend that the role of an ADL is not to provide a fixed set of analyses but rather to
enable the construction of analysis tools specific to the domain of the system. That is, rather
than constructing highly specialized, domain specific ADLs, we should instead make ADLs
adaptable to a wide variety of domains by providing tools to easily define new architectural
analysis techniques.

Our constraint-based analysis system provides a framework in which many different kinds
of analysis can be expressed naturally and succinctly. This enables the addition of new
analysis domains to the architectural analyzer with a minimum of effort. We also show
that these same techniques may be applied to dynamic architectures, allowing analysis to be
applied to families of architectures as well as a specific architecture.

In this paper we demonstrate a unit analyzer built using our methodology. We have
studied other analysis domains, including security analysis and propagation delay analysis;
these domains are no more difficult to construct than unit analysis so we focus on this
one domain. Due to space limitations we refer to [PS98] for the discussion of these other



domains. Our analysis is based on the HM(X) type system [OSW98], a polymorphic type
checker based on the Hindley-Milner type checker. HM(X) extends this widely-used type
system using user-defined constraint subsystems. Our approach has a number of significant
advantages:

e Polymorphic types describe both values within an analysis domain and the relationships
between such values. This is a simple and natural way of expressing the propagation
of information during analysis.

e We reuse a single inference engine for many different forms of analysis.

e Type systems/inference have a strong mathematical foundation, allowing formal proofs
of analysis properties.

e Qur type system can handle both static and dynamic architectures. That is, some
system components may remain unspecified during analysis.

2 Analyzing a Software Architecture

For concreteness we use the ACME architecture definition language; other languages capable
of describing the properties and interconnection of components would be equally suitable.
In particular, UML could also be extended to include analyzers build within our framework.
In the interest of simplicity, we use only the following ACME features:

e Components: the basic unit of software described by the architecture.
e Ports: specific interfaces to a component.

e Properties: attributes attached to either ports or components.

e Attachments: connections between ports.

Each analysis is defined by a domain-specific constraint solver, defining an inference
domain to the HM(X) type checker, and component property declarations, describing each
component from the perspective of the chosen analysis domain. Constraint solvers for the
HM(X) type checker are not difficult to write but, however, it is beyond the scope of this paper
to describe the programming details involved in this task. There is much literature regarding
constraint solving; we only mention [BS94]. The HM(X) constraint solver is generally a
straightforward translation of existing constraint solvers. The primary difference between
HM(X) constraint solvers and more conventional ones is the presence of type variables within
HM(X) constraints.

Each domain is assigned a unique property name; this property associates a component
port with its properties in that domain. The syntax of the property is recognized by a
domain-specific parser; this allows properties to be expressed in a way natural to the un-
derlying domain. These properties may contain type variables which are scoped over an
entire component. This allows type dependencies between various ports in a component to
be expressed using a common type variable name.

Ports need not have type definition for every form of analysis; missing properties are
defaulted to the most general type: a fresh type variable. An analysis that does not apply
to some ports of a component thus will not generate type mismatch errors for those ports
omitting the property declaration for that analysis.

For example, this ADL declaration (using ACME[GMW97] syntax)

Component RemoteCopy = {
Port input = {

property valueType = a};
Port output = {
property valueType = a};}



defines a polymorphic connector that copies a value of any type from input to output. The
type a is a type variable representing an unknown type. The use of the same type variable
in two different ports constrains each use of RemoteCopy to have the same type at the input
and output ports. We (arbitrarily) choose the property valueType to denote the type of
the copied value. Different instances of this component may be used to copy different types
of values.

Type variables may be subject to constraints. Constraints arise naturally in many real-
world problem domains. For example, performance constraints (time, space, number of mes-
sages), numeric range checking (array bounds), This kind of polymorphism is often referred
to as constrained polymorphism.

We now turn to unit analysis. Units such as meters, seconds, grams, or meters/second
give meaning to numeric quantities. In a well-formed program, these units must be used
consistently: passing a value measured in inches to a component that expects meters is a
error that we detect via unit analysis over the ADL. Unit analysis is of particular interest to
us since many operations are naturally polymorphic with respect to units. For example, the
addition operation can be used for values of any unit but the units of the input values must
be consistent. The following component exploits unit polymorphism:

Component RateMonitor =
{ Port monitoredValue = { Property Unit = a};
Port timeClock = { Property Unit = s};
Port rate = { Property Unit = a/s}}

The component RateMonitor monitors a value and, using an external clock, and calculates
the rate of change in the value being monitored. The unit domain is declared by the property
name Unit. We use constrained types to express the relationship between the units of the
rate output and the inputs, with the output having units that are the ratio of the input
units. Note the unit of the rate port is an expression over multiple type variables. Our
system allows units to be expressed by an arbitrary set of base units and expressions the
operators * and /. A larger example is found in the next section in which we additionally
introduce the concept of a dynamic architecture.

A description of constrained polymorphic type inference is beyond the scope of this paper.
The interested reader is referred to [OSW98]. Users, however, need understand only how to
express dependencies using type variables, not how these dependencies are exploited during
the inference process.

3 Dynamic and Higher-Order Architectures

Architectural descriptions are not limited to complete, static systems in which all compo-
nents and connections are fully specified. We also wish to capture design patterns at the
architectural level. For example, we wish to express patterns such as the attachment of a
temperature correction table to an arbitrary sensor. We thus turn to higher-order architec-
tures: ones capable of defining a pattern for connecting a set of components, some of which
are as yet unspecified.

What role can architectural analysis play when the underlying system is not fully speci-
fied? Instead of waiting for the architecture to be fully instantiated for analysis, we instead
apply analysis directly to the parameterized architecture. The analysis characterizes the
valid configurations of parameters to the architecture or defines a simplified relationship
between attributes of the parameters and overall system attributes.

We introduce higher-order architectures by adding a simple parameterization construct
to ACME, allowing the definition of architectural abstractions. The following defines an
architecture which is parameterized over a set of components:

Architecture name (cl1, ... , cn) =
{ body }



This construct is somewhat similar to architectural templates being developed for ACME.
Within the scope of the named architecture, parameter components cl through cn are un-
known entities. This construct defines patterns to be elaborated by the ADL, yielding a
fully instantiated architecture, or, by postponing elaboration until execution time, it imple-
ments dynamic architectures. For the purpose of our analysis it does not matter when the
parameters are instantiated.

Abstractions such as the Architecture construct may be defined anywhere in the archi-
tectural system definition and may passed as arguments to other abstractions. The HM(X)
type inferred for an abstraction defines a relationship between the types of the unknown ar-
guments and the type of the resulting system. The inferred type of an abstraction expresses
the relationship between the argument types the type of the resulting system.

Consider the following architectural definition, expressed in a slightly extended version
of ACME:

// A 2-way broadcast preserves units from input to outputs
Component Broadcaster = {

Port input = {Property Unit = a};

Port outputl = {Property Unit = a};

Port output2 = {property Unit = a}}

// A higher order architecture to connect two components in parallel,
// using an arbiter to chose which output to use
Architecture parallelCompose(componentl, component2, arbiter) = {
Component broadcast = new Broadcaster;
Attachments {
parallelCompose.input to broadcast.input;
parallelCompose.output to arbiter.output;
broadcast.outputl to componentl.input;
broadcast.output2 to component2.input;
arbiter.inputl to componentl.output;
arbiter.input2 to component2.output; }

A graphical representation of the component dependencies can be found in Figure 1.
Parameter components componentl, component2 and arbiter are emphasized. In the same
figure, we visualize the data flow of the parameterized architecture paralleCompose. The
three parameter components, componentl, component2 and arbiter are passed as parameters
to the parameterized architecture parallelCompose. The overall result is attached to the
output port. What kind of properties do the three variable components have to fulfill? This
can be observed by the type description inferred for parallelCompose:

parallelCompose =

{ Property Component = { componentl { Port input = { Property Unit = a};
Port output = {Property Unit = b}};
component2 { Port input = { Property Unit = a};
Port output = {Property Unit = c}};

arbiter { Port inputl = { Property Unit = b};

Port input2 = { Property Unit = c};
Port output = { Property Unit = d}}}}

Components componentl and component2 need to consist of at least an input and an output
port. The arbiter component must have two input port s, named inputl and input2, and
an output port. The inferred type shows that the two components must share a common
unit for their inputs but that they may return different output units, so long as the arbiter
component accepts as input these same types.
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Figure 1: Dynammic architecture

4 Conclusions

We have demonstrated a general framework supporting many varieties of architectural anal-
ysis. Using the HM(X) polymorphic type system, as specialized by a simple domain-specific
constraint solver, complex analysis or validation tasks can be applied to an architecture
with relatively little effort. Since we do not rely on any assumptions about any underlying
type system, our system operates solely at the architectural level and does not restrict the
implementation of the architecture in any way. Novel aspects of our approach include:

o We are not committed to a specific domain or analysis. Our system is similar to other
general analysis frameworks such as attribute grammars or predicate calculus.

e Our analysis works nicely with architectural abstractions, making it useful for higher-
order or dynamic architectural specifications.

e The engine which drives the analysis, polymorphic typing with constraints, has been
studied extensively and has many useful formal properties.

e Type signatures assigned to components by our system are usually quite descriptive
and understandable to ordinary programmers, providing an effective way to describe
and document component properties.

The unit analysis presented here is not trivial. There are already a couple of systems
that deal solely with unit analysis [Hou83, WO91, Ken94] but our framework handles this
analysis in a more general way, needing less than a page of specialized code to define unit
analysis.

How difficult is it to add new types of analysis within our system? This depends on the
complexity of the constraint system needed for the underlying domain. So far, each analysis
we have implemented has used a very simple constraint solvers. For example, the constraint
solver for unit analysis consists of a single function to convert unit types into a canonical
form, about 15 lines of code written in Haskell. The surrounding HM(X) engine is much



larger but this code is shared by every analysis. As we implement other forms of analysis
within this framework, we expect to gain further evidence of the power of our techniques and
get a better feeling for the types of analysis naturally supported by the HM(X) type system.

Not all forms of analysis are well matched to the HM(X) type inference system. Algo-
rithms that examine the system all at once rather than incrementally over subregions of the
architecture are not as well suited to our approach since constraints cannot be simplified for
subregions. For example, some graph problems such as network flow do not encode nicely as
a constraint solver. HM(X) should not be considered as a replacement for existing analysis
systems but rather as one tool among many.
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